Nonlinear Adaptive Dynamic Inversion Applied to a Generic Hypersonic Vehicle
نویسندگان
چکیده
Flight control of hypersonic vehicles is challenging because of the wide range of operating conditions encountered and certain aspects unique to high speed flight. A particular safety concern in hypersonic flight is the risk of an inlet unstart, which not only produces a significant decrease in thrust but also results in a change to the aerodynamics and thus can lead to the loss of the vehicle. Previous work on control design for hypersonic vehicles often uses linearized or simplified nonlinear dynamical models of the vehicle, and very little work has been done on recovering from unstart events. Using a generic hypersonic vehicle as a control design and simulation model, this paper develops a nonlinear adaptive dynamic inversion control architecture with a control allocation scheme to track realistic flight path angle trajectories. A robustness analysis is performed on the initial control architecture design, which shows that the control architecture is able to handle time delays, perturbations in stability derivatives, and reduced control surface effectiveness. The control architecture then is evaluated for its ability to handle inlet unstart. Simulation results presented in the paper demonstrate that the approach achieves desired tracking performance while being robust to the particular uncertainties and inlet unstart conditions studied.
منابع مشابه
On the Design of Nonlinear Discrete-Time Adaptive Controller for damaged Airplane
airplane in presence of asymmetric left-wing damaged. Variations of the aerodynamic parameters, mass and moments of inertia, and the center of gravity due to damage are all considered in the nonlinear mathematical modeling. The proposed discrete-time nonlinear MRAC algorithm applies the recursive least square (RLS) algorithm as a parameter estimator as well as the error between the real ...
متن کاملAdaptive attitude controller of a reentry vehicles based on Back-stepping Dynamic inversion method
This paper presents an attitude control algorithm for a Reusable Launch Vehicle (RLV) with a low lift/drag ratio (L/D < 0.5), in the presence of external disturbances, model uncertainties, control output constraints and the thruster model. The main novelty of proposed control strategy is a new combination of the attitude control methods included backstepping, dynamic inversion and adaptive cont...
متن کاملAdaptive Output Feedback Based on Closed-Loop Reference Models for Hypersonic Vehicles
This paper presents a new method of synthesizing an output feedback adaptive controller for a class of uncertain, non-square, multi-input multi-output systems that often occur in hypersonic vehicle models. The main challenge that needs to be addressed is the determination of a corresponding square and strictly positive real transfer function. This paper proposes a new procedure to synthesize tw...
متن کاملObserver Based Dynamic Surface Control of a Hypersonic Flight Vehicle
This paper describes the design and analysis of a proportional integral air speed controller and a nonlinear adaptive dynamic surface altitude controller for the longitudinal dynamics of a generic hypersonic flight vehicle. The uncertain nonlinear functions in the pure feedback flight vehicle model are approximated by using radial basis function neural networks. For the controller design, the c...
متن کاملNear Space Hypersonic Unmanned Aerial Vehicle Dynamic Surface Backstepping Control Design
Compared with traditional aircraft, the near space hypersonic unmanned aerial vehicle control system design must deal with the extra prominent dynamics characters, which are differ from the traditional aircrafts control system design. A new robust adaptive control design method is proposed for one hypersonic unmanned aerial vehicle (HSUAV) uncertain MIMO nonaffine block control system by using ...
متن کامل